langchain-learning-kit/app/utils/faiss_helper.py

242 lines
7.5 KiB
Python
Raw Permalink Normal View History

"""
FAISS 向量存储辅助函数
"""
import os
from typing import List, Optional
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document as LangChainDocument
from langchain_core.embeddings import Embeddings
from app.utils.exceptions import VectorStoreError
from app.utils.logger import get_logger
logger = get_logger(__name__)
class FAISSHelper:
"""
FAISS 向量存储操作的辅助类
"""
def __init__(self, base_path: str):
"""
初始化 FAISS 辅助器
Args:
base_path: FAISS 索引的基础目录路径
"""
self.base_path = base_path
os.makedirs(base_path, exist_ok=True)
def get_index_path(self, kb_name: str) -> str:
"""
获取知识库的 FAISS 索引目录路径
Args:
kb_name: 知识库名称或 ID
Returns:
str: FAISS 索引目录的完整路径
"""
return os.path.join(self.base_path, str(kb_name))
def index_exists(self, kb_name: str) -> bool:
"""
检查知识库的 FAISS 索引是否存在
Args:
kb_name: 知识库名称或 ID
Returns:
bool: 如果索引存在则为 True否则为 False
"""
index_path = self.get_index_path(kb_name)
return os.path.exists(os.path.join(index_path, "index.faiss"))
def create_index(
self,
kb_name: str,
documents: List[LangChainDocument],
embeddings: Embeddings,
) -> FAISS:
"""
从文档创建新的 FAISS 索引
Args:
kb_name: 知识库名称或 ID
documents: 要索引的文档列表
embeddings: 嵌入向量实例
Returns:
FAISS: FAISS 向量存储实例
Raises:
VectorStoreError: 如果索引创建失败
"""
try:
logger.info("creating_faiss_index", kb_name=kb_name, doc_count=len(documents))
if not documents:
raise VectorStoreError("Cannot create index from empty document list")
# 创建 FAISS 索引
vector_store = FAISS.from_documents(documents, embeddings)
logger.info("faiss_index_created", kb_name=kb_name)
return vector_store
except Exception as e:
logger.error("faiss_index_creation_failed", kb_name=kb_name, error=str(e))
raise VectorStoreError(f"Failed to create FAISS index: {str(e)}")
def save_index(self, kb_name: str, vector_store: FAISS) -> None:
"""
FAISS 索引保存到磁盘
Args:
kb_name: 知识库名称或 ID
vector_store: FAISS 向量存储实例
Raises:
VectorStoreError: 如果保存操作失败
"""
try:
import pickle
index_path = self.get_index_path(kb_name)
os.makedirs(index_path, exist_ok=True)
logger.info("saving_faiss_index", kb_name=kb_name, path=index_path)
# 使用受控的 pickle 协议手动保存 FAISS 索引
index_file = os.path.join(index_path, "index.faiss")
pkl_file = os.path.join(index_path, "index.pkl")
# 保存 FAISS 索引(二进制格式,无 pickle 问题)
import faiss
faiss.write_index(vector_store.index, index_file)
# 使用 pickle 协议 4 保存文档存储和索引到文档存储的映射
with open(pkl_file, "wb") as f:
pickle.dump((vector_store.docstore, vector_store.index_to_docstore_id), f, protocol=4)
logger.info("faiss_index_saved", kb_name=kb_name)
except Exception as e:
logger.error("faiss_index_save_failed", kb_name=kb_name, error=str(e))
raise VectorStoreError(f"Failed to save FAISS index: {str(e)}")
def load_index(
self,
kb_name: str,
embeddings: Embeddings,
allow_dangerous_deserialization: bool = True,
) -> FAISS:
"""
从磁盘加载 FAISS 索引
Args:
kb_name: 知识库名称或 ID
embeddings: 嵌入向量实例
allow_dangerous_deserialization: 允许 pickle 反序列化
Returns:
FAISS: FAISS 向量存储实例
Raises:
VectorStoreError: 如果加载操作失败
"""
try:
import pickle
index_path = self.get_index_path(kb_name)
if not self.index_exists(kb_name):
raise VectorStoreError(f"FAISS index not found for kb: {kb_name}")
logger.info("loading_faiss_index", kb_name=kb_name, path=index_path)
# 手动加载 FAISS 索引
index_file = os.path.join(index_path, "index.faiss")
pkl_file = os.path.join(index_path, "index.pkl")
# 加载 FAISS 索引
import faiss
index = faiss.read_index(index_file)
# 加载文档存储和索引到文档存储的映射
with open(pkl_file, "rb") as f:
docstore, index_to_docstore_id = pickle.load(f)
# 重构 FAISS 向量存储
vector_store = FAISS(
embedding_function=embeddings.embed_query,
index=index,
docstore=docstore,
index_to_docstore_id=index_to_docstore_id,
)
logger.info("faiss_index_loaded", kb_name=kb_name)
return vector_store
except Exception as e:
logger.error("faiss_index_load_failed", kb_name=kb_name, error=str(e))
raise VectorStoreError(f"Failed to load FAISS index: {str(e)}")
def add_documents(
self,
kb_name: str,
vector_store: FAISS,
documents: List[LangChainDocument],
) -> List[str]:
"""
向现有 FAISS 索引添加文档
Args:
kb_name: 知识库名称或 ID
vector_store: FAISS 向量存储实例
documents: 要添加的文档列表
Returns:
List[str]: 文档 ID 列表
Raises:
VectorStoreError: 如果添加操作失败
"""
try:
logger.info("adding_documents_to_index", kb_name=kb_name, doc_count=len(documents))
ids = vector_store.add_documents(documents)
logger.info("documents_added_to_index", kb_name=kb_name, added_count=len(ids))
return ids
except Exception as e:
logger.error("add_documents_failed", kb_name=kb_name, error=str(e))
raise VectorStoreError(f"Failed to add documents to index: {str(e)}")
def delete_index(self, kb_name: str) -> None:
"""
从磁盘删除 FAISS 索引
Args:
kb_name: 知识库名称或 ID
Raises:
VectorStoreError: 如果删除操作失败
"""
try:
import shutil
index_path = self.get_index_path(kb_name)
if os.path.exists(index_path):
logger.info("deleting_faiss_index", kb_name=kb_name, path=index_path)
shutil.rmtree(index_path)
logger.info("faiss_index_deleted", kb_name=kb_name)
else:
logger.warning("faiss_index_not_found", kb_name=kb_name)
except Exception as e:
logger.error("faiss_index_delete_failed", kb_name=kb_name, error=str(e))
raise VectorStoreError(f"Failed to delete FAISS index: {str(e)}")