langchain-learning-kit/app/utils/logger.py

73 lines
1.8 KiB
Python
Raw Normal View History

"""
使用 structlog 的结构化日志配置
"""
import logging
import sys
from typing import Any
import structlog
from structlog.types import EventDict, Processor
def add_app_context(logger: Any, method_name: str, event_dict: EventDict) -> EventDict:
"""
向日志事件添加应用程序上下文
Args:
logger: 日志记录器实例
method_name: 方法名
event_dict: 事件字典
Returns:
EventDict: 修改后的事件字典
"""
event_dict["app"] = "langchain-learning-kit"
return event_dict
def configure_logging(log_level: str = "INFO") -> None:
"""
配置结构化日志
Args:
log_level: 日志级别DEBUGINFOWARNINGERRORCRITICAL
"""
# 配置标准日志
logging.basicConfig(
format="%(message)s",
stream=sys.stdout,
level=getattr(logging, log_level.upper()),
)
# 配置 structlog
structlog.configure(
processors=[
structlog.contextvars.merge_contextvars,
structlog.processors.add_log_level,
structlog.processors.StackInfoRenderer(),
structlog.dev.set_exc_info,
structlog.processors.TimeStamper(fmt="iso"),
add_app_context,
structlog.processors.JSONRenderer(),
],
wrapper_class=structlog.make_filtering_bound_logger(
getattr(logging, log_level.upper())
),
context_class=dict,
logger_factory=structlog.PrintLoggerFactory(),
cache_logger_on_first_use=True,
)
def get_logger(name: str = __name__) -> structlog.BoundLogger:
"""
获取结构化日志记录器实例
Args:
name: 日志记录器名称
Returns:
structlog.BoundLogger: 日志记录器实例
"""
return structlog.get_logger(name)